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The Use of FDTD for the Analysis of
Magnetoplasma Channel Waveguides
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Abstract—The finite-difference time-domain (FDTD) method
is used for the analysis of magnetoplasma rectangular channel
waveguides. Single and parallel-coupled waveguides are consid-
ered. The effect of varying the amplitude and the orientation of
the bias magnetic fieldBBB0 on the dispersion characteristics of
the first modes is examined. However, the FDTD formulation,
does not excite evanescent modes for a sufficiently long time
interval, particularly when in the presence of the propagating
or dynamic modes. As a result, the nonreciprocal properties of
these structures, primarily associated with the evanescent modes,
could not be investigated.

Index Terms—Dispersion characteristics, FDTD method, mag-
netoplasma channel waveguides.

I. INTRODUCTION

T HE GROWING demand for signal processing at very
high rates has enhanced the interest in the millimeter-

wave band technology. Dielectric waveguides are particularly
attractive for use in this frequency band because of their better
performance than other waveguides, including those contain-
ing metallic elements, such as microstrip lines and finlines.
The possibility of controlling the propagation characteristics
of these waveguides has suggested the use of a plasma-
induced semiconductor, controlled by a magnetic field [1], [2].
Single and parallel-coupled rectangular channel waveguides,
as shown in Figs. 1 and 2, respectively, were, therefore,
considered with the dielectric replaced by a semiconductor.
To keep the losses low, a lightly doped semiconductor was
chosen.

The magnetoplasma was induced by means of a magnetic
field applied along a general orientation. To study the effect
of the amplitude and orientation of on the propagation
characteristics along the magnetoplasma rectangular channel
waveguide, a finite-difference time-domain (FDTD) formu-
lation was developed. This formulation is highly complex,
primarily due to the discretized version of the convolution
between the electric susceptibility in the time domain
and the electric field. This convolution is done by iteration,
similar to the procedure followed by Luebberset al. [3]. With
the general orientation of , the electric susceptibility is a
tensor that may have all nine elements different from zero.
In addition, each tensor element may simultaneously have
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Fig. 1. Single rectangular channel waveguide.

Fig. 2. Parallel-coupled rectangular channel waveguide.

Debye and Lorentz poles. The complexity of the formulation
could be even higher if more than one type of carrier were
considered in the semiconductor. The examples shown here
consider only the case of a lightly doped-type GaAs
semiconductor. Therefore, only one type of carrier is sufficient
for this analysis.

II. THE TIME DISCRETIZATION OFMAXWELL’S EQUATIONS

For normalized electromagnetic fields with the free-space
intrinsic impedance equal to unity, the Maxwell’s equa-
tions for a medium with a relative permeability are
written as

(1)

(2)

where is the convolution vector

(3)

is the static dielectric constant, is the velocity of
light in free space, and is the time-dependent electric-
susceptibility tensor. and are the electric- and magnetic-
field vectors, respectively.
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The notation introduced by Yee [5] is also used here
such that a field vector in an instant is
abbreviated by where is the time increment between
two consecutive field samples. The time interval between
consecutive samples of and fields is equal to .

After time discretization, the following system of equations
is obtained from Maxwell’s equations (1) and (2):

(4)

(5)

where and are the auxiliary fields, defined by

(6)

(7)

Note that is explicitly obtained from (4). Because
contains terms in , , then

cannot be explicitly obtained from (5). It is necessary, there-
fore, to obtain a relation between and .

Following Luebberset al. [3], and because the variation of
in comparison with in a time interval is small,

then

(8)

The following definitions are made:

(9)

(10)

(11)

(12)

The convolution vector may, therefore, be written as

(13)

From (5) and (13), is explicitly obtained from

(14)

where is the idem factor and is the inverse matrix of
.
The convolution difference vector may be expressed in

terms of its basic components as

(15)

where

(16)

For magnetization along an arbitrary direction, the suscep-
tibility tensor elements for a given carrierare given by

(17)

where is the unit step function and

for (18)

with the parameters and given by

(19)

and with the cyclotron frequency and plasma frequency
of the carrier given by

(20)

where is the charge, is the effective mass, is the
carrier concentration, and is the collision rate of carrier .

The susceptibility tensor of the semiconductor with
type of carriers (electrons and holes from doping, photoin-

duced electrons and holes, etc.) is given by

(21)

In order to obtain the iterative calculation of the convolution
difference, should be an exponential function [3]. This
is accomplished by defining a complex version of (17) as
follows:

(22)
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where with , such that

(23)

representing the real part of.
The discretized version of the convolution difference is,

therefore, obtained from

(24)

where

(25)

(26)

with

(27)

(28)

III. 3-D SPACE DISCRETIZATION

Yee’s cell [5] will be used for the three-dimensional space
discretization (3D-FDTD). The general location of each cell in
a Cartesian coordinate system is represented by

, where , , and are integer numbers
and , , and are the cell dimensions along, ,
and , respectively. The notation for any field component

after time and space discretization is, therefore,

For each spatial cell, there are six field components. For
example, for a cell with a location these components
are

The six auxiliary field components are (29)–(34),
shown at the bottom of the page, where the parameters,

(29)

(30)

(31)

(32)

(33)

(34)
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, and are defined by

(35)

(36)

(37)

IV. 2-D SPACE DISCRETIZATION

For a uniform waveguide along the-direction, the fields
propagate with an amplitude proportional to ,
where is the phase constant of the propagating mode. Due
to this exponential dependence on, the derivative of any
field component with respect to may be replaced by .
The problem may, therefore, be treated as a two-dimensional
space discretization (2-D FDTD).

The expressions for and are then
reduced to (38)-(43), shown at the bottom of the page, where

(44)

Note that is a parameter that depends directly of the
phase constant , which is treated as an input parameter for
the 2-D FDTD.

Only Gaussian excitations in time and space are considered
here, and are expressed by

(45)

with

(46)

The excitation pulse is truncated at a time ,
sufficiently large in order to avoid an abrupt variation in the
excitation pulse. The values used in most of the simulations
were , , and . The space
distribution of is applied to the center of the
waveguide core, with polarization alongfor the mode,
and along for the mode.

The maximum time increment based on the Courant
condition for the 2-D FDTD is

(47)

where is the smallest value of refraction index of the
materials in the waveguide and is the smallest space
increment used.

An adequate choice of time increment is ,
with . For , instabilities are usually observed. A
convenient choice is because higher dispersion errors
are observed with lower values of [7].

To limit the computational domain, three types of walls are
considered: electric, magnetic, and absorbing. In the electric
wall, the tangential component of the electric field is set equal
to zero, while in the magnetic wall the tangential component
of the magnetic field is set equal to zero. In the absorbing
wall, the first-order Mur’s approximation [8] is used. This
approximation is sufficient for the examples considered here.

V. NUMERICAL RESULTS

Single and parallel-coupled rectangular channel waveguides
(as shown in Figs. 1 and 2, respectively), are considered
here. The core consists of a lightly doped n-type GaAs
semiconductor biased by means of a static magnetic field

along an arbitrary -direction. A magnetoplasma is thus
induced in the core.

The numerical results shown here were calculated with the
following material and geometrical parameters:

1) cyclotron frequency: , or GHz
( , or G);

2) plasma frequency: GHz (
cm );

3) collision rate: collisions/s (
ps);

4) dielectric constant of the plasma host (GaAs):
;

5) dielectric constant of the substrate: ;
6) effective mass of the carrier: m ;
7) channel height: mm;
8) channel width: mm;

(38)

(39)

(40)

(41)

(42)

(43)



FARIAS AND GIAROLA: USE OF FDTD FOR ANALYSIS OF MAGNETOPLASMA CHANNEL WAVEGUIDES 391

Fig. 3. Effect offc on the dispersion characteristics of theEx

11
andEy

11

modes.

9) minimum dimension of space discretization
mm;

10) spatial width in rms of the excitation pulse:
mm;

11) spatial height in rms of the excitation pulse:
mm;

12) spectral bandwidth of the excitation pulse:
GHz;

13) number of time iterations for each modal point :
;

14) phase constants at which the modal points were
calculated: rad/mm.

A. Single Rectangular Channel Waveguide

Besides the previously mentioned parameters, the following
were additionally chosen for the single rectangular channel
waveguide of Fig. 1:

1) numerical domain width: mm;
2) numerical domain height: mm;
3) number of cells along the horizontal axis: ;
4) number of cells along the vertical axis: .

The effect of on the dispersive characteristics of and
modes is shown in Fig. 3 for an angle between and ,

given by . Since the mode has the electric-field
component nearly aligned with the static magnetic field,
the Lorentz force is very weak such that the dispersion curve
is practically unaffected by . However, for the mode,
not only is the electric field nearly perpendicular to the static
magnetic field, but also both the electric and static magnetic
fields are perpendicular to the direction of mode propagation.
This situation is known as the Voight-type configuration [9].
Note that the effect of the static magnetic field is pronounced
and causes gyroresonances, which are essentially dependent
on , , and . These resonances are associated with the
transitions observed in Fig. 3. The attenuation caused by the
magnetic resonances is better observed in the time responses of
the electric field shown in Fig. 4 for GHz and for two
values of and 11 rd/mm. The high attenuation observed

Fig. 4. Time response ofEx(t), for � = 6 and 11 rd/mm, showing the
strong effect of the gyroresonance on the attenuation of the dominantEx

11

mode.

Fig. 5. Effect of�x on the dispersion characteristics of theEx

11
mode.

for rad/mm is due to the resonance. For rad/mm,
the attenuation is not as high and it is due to the collision rate
of the carriers in the plasma. The observed mode composition
is due to the excitation of a higher order mode. Not only
the transition caused by the plasma resonance, but also the
excitation of higher order modes makes the calculation of the
wave attenuation very difficult by the FDTD method.

The effect of the orientation of on the dispersion curves
of the waveguide are shown in Figs. 5 and 6. As may be
observed in Fig. 5, for , the curve for the mode
is practically unaffected by the presence of. The effect,
however, becomes more pronounced whenincreases and it
nearly saturates at . Note also, that the transitions are
more abrupt at the higher values of. Fig. 6 shows that the
effect, not only on the mode, but also on the mode, is
very small when is varied in the -plane. Similar results
were also observed in the -plane.

For the Voight-type configuration, with crossed RF and
fields, the propagation characteristics may become quite

complex, particularly with strong fields, as shown in
Fig. 7. This type of behavior is similar to that described
by Bolle and Talisa [1]. The FDTD algorithm developed
here, however, excites well only the propagating or dynamic
modes. The evanescent modes are not excited for a sufficiently
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Fig. 6. Effect of�z on the dispersion characteristics of theEx

11
andEy

11

modes.

Fig. 7. Effect of the amplitude ofB0 on the dispersion characteristics of the
E
x

11
mode in a Voight-type configuration.

long period of time when they are in the presence of the
dynamic modes. They cannot, therefore, be observed. As a
result, the nonreciprocal effects in magnetoplasma rectangular
waveguides primarily associated with the evanescent modes
could not be observed using the FDTD formulation.

In order to obtain the results shown here, the numerical
domain was segmented in various regions and the discretiza-
tion was done with a concentration at the materials interfaces.
The waveguide core was uniformly discretized while in other
regions the discretization was gradually done, such that the
increase in cells dimensions was done in a direction of
decreasing effective values of the dominant component of
the electric field. For each material interface side, the cells
dimensions were made equal to a value of .

Fig. 8 shows the behavior of the cells width in millimeters
along the horizontal axis that passes through the waveguide-
core center of gravity. A similar procedure is followed for a
direction along the vertical axis. In this figure, three refinement
degrees are shown and are indicated by, , and . The values
of are given by 100, 80, and 65m, respectively. The
arrows indicate the materials interfaces.

Fig. 8. Spatial configuration for three degrees of numerical domain refine-
ments.

Fig. 9. Propagation characteristics with the three degrees of numerical
domain refinements of Fig. 8.

Fig. 9 shows the dispersion characteristics with the three
above-mentioned refinement degrees. Note that there is only
a very small deviation between solutions. Option c: 4434
was used for the results shown here, for which the numerical
domain discretization consists of 44 cells along the horizontal
axis , and 34 cells along the vertical axis.

In order to clarify the region of transition caused by the
plasma resonance, consider the points and of
Fig. 9. The numbers 5 and 6 (between parenthesis) are used to
indicate the value of , expressed in rd/mm. The electric-field
spectra for these values ofare shown in Fig. 10. Also shown
in this figure (in a heavy solid trace) is the spectrum for an
intermediate value rd/mm. In this case, the presence of
both modes is well characterized by the two peaks indicated by
the arrows. In some cases, even three modes may be observed
simultaneously, as is the case of rd/mm, shown by the
light solid trace of Fig. 10. This effect may be explained by
making a correlation with the solutions obtained by Davieset
al. [10], particularly with their results shown in Figs. 4 and 5.
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Fig. 10. Electric-field spectra for three values of�.

Fig. 11. Effect of�x on the dispersion characteristics of the even and odd
Ex

11
and Ey

11
modes.

In order to test the validity for using the FDTD method to a
magnetoplasma, results were obtained to compare with those
shown by Harrington [11] using the moment method for the
analysis of a metal cavity containing a magnetized plasma. A
good agreement between the results from both methods was
demonstrated [12]. In addition, convergence tests were done
using various refinement degrees of discretization. The disper-
sion curves and field spectra were compared among themselves
in order to arrive to the most satisfactory parameters for the
discretization of the numeric domain.

B. Parallel-Coupled Rectangular Channel Waveguide

In addition to the geometrical and material parameters
chosen in the beginning of this section, the following param-
eters were also used in the analysis of the parallel-coupled
rectangular channel waveguide:

1) distance between channels: mm;
2) numerical domain width: mm;
3) numerical domain height: mm;
4) number of cells along the horizontal axis: ;
5) number of cells along the vertical axis: .

Fig. 12. Effect of�x on the dispersion characteristics of the evenEx

11
and

E
y

11
modes.

Fig. 13. Effect of�x on the dispersion characteristics of the even and odd
Ex

11
modes forfc = 90 GHz (B0

�= 2116 G). Also shown are curves for
fc = 10 GHz (B0

�= 235 G).

The effect of the orientation of on the dispersion curves
of the even and odd and modes is shown in Figs. 11
and 12. As expected, most of the magnetization impact is
verified in the even and odd modes. The effect of on
the dispersion characteristics of the even and odd modes
is small. In general, the magnetization causes a difference
between the and modes that increases as is
increased. In other words, the Lorentz force increases for the

mode and decreases for the mode. This behavior is
better observed in the curves for the even and modes,
shown in Fig. 12. Note that the difference between propagation
characteristics of even and modes is smaller for

. For , the phase difference between even and
modes is larger. In Fig. 13, the effect of orientation of the

static magnetic field on the propagation characteristics of even
and odd modes is shown for GHz ( G).
Also shown are the curves for even and odd modes with
a residual magnetic field of approximately 235 G (
GHz). This static magnetic-field level is sufficiently low, such
that its effect on the dispersion curves is negligible. Note that
the effect of the static magnetic-field orientation on the phase
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difference between these two modes is very small. This is
because the phases of both modes change about the same
amount when is varied. Consequently, only a small control
of the coupling between waveguides is achieved by varying
the orientation of the static magnetic field.

VI. CONCLUSIONS

An extended version of the FDTD method for the analysis
of waveguides containing magnetoplasma was presented here.
The derivative operator, not only in time, but also in space,
was approximated by finite differences and applied directly
to Maxwell’s equations [5]. The formulation was extended
by including the calculation of the convolution between the
electric-field intensity and the electric-susceptibility tensor
using a procedure similar to that described by Luebberset al.
[3]. This formulation is, therefore, applicable to waveguides
containing magnetoplasma with a general orientation of the
static magnetic field.

Numerical results for single and parallel-coupled magneto-
plasma rectangular channel waveguides were presented. The
effect of the amplitude and orientation of the static magnetic
field on the dispersion characteristics of these waveguides
was carefully examined. The nonreciprocal characteristics,
however, could not be investigated because the FDTD for-
mulation did not excite (for a sufficiently long time) the
evanescent modes—the ones that are primarily responsible for
this behavior.
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